MEG Can Map Short and Long-Term Changes in Brain Activity following Deep Brain Stimulation for Chronic Pain

نویسندگان

  • Hamid R. Mohseni
  • Penny P. Smith
  • Christine E. Parsons
  • Katherine S. Young
  • Jonathan A. Hyam
  • Alan Stein
  • John F. Stein
  • Alexander L. Green
  • Tipu Z. Aziz
  • Morten L. Kringelbach
چکیده

Deep brain stimulation (DBS) has been shown to be clinically effective for some forms of treatment-resistant chronic pain, but the precise mechanisms of action are not well understood. Here, we present an analysis of magnetoencephalography (MEG) data from a patient with whole-body chronic pain, in order to investigate changes in neural activity induced by DBS for pain relief over both short- and long-term. This patient is one of the few cases treated using DBS of the anterior cingulate cortex (ACC). We demonstrate that a novel method, null-beamforming, can be used to localise accurately brain activity despite the artefacts caused by the presence of DBS electrodes and stimulus pulses. The accuracy of our source localisation was verified by correlating the predicted DBS electrode positions with their actual positions. Using this beamforming method, we examined changes in whole-brain activity comparing pain relief achieved with deep brain stimulation (DBS ON) and compared with pain experienced with no stimulation (DBS OFF). We found significant changes in activity in pain-related regions including the pre-supplementary motor area, brainstem (periaqueductal gray) and dissociable parts of caudal and rostral ACC. In particular, when the patient reported experiencing pain, there was increased activity in different regions of ACC compared to when he experienced pain relief. We were also able to demonstrate long-term functional brain changes as a result of continuous DBS over one year, leading to specific changes in the activity in dissociable regions of caudal and rostral ACC. These results broaden our understanding of the underlying mechanisms of DBS in the human brain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Cortical and Peripheral Electrical Stimulation on Brain Activity in Individuals with Chronic Low Back Pain

Purpose: Neuroscience studies suggest that Chronic Low Back Pain (CLBP) is associated with central sensitization, and maladaptive reorganization of the brain; this introduced a new target for LBP treatment. Studies revealed that cortical and peripheral electrical stimulation can be beneficial in regulating brain neuronal activity. However, there is a scarcity of evidence to support the effects ...

متن کامل

Catecholamine Contents of Different Region of Adult Rat Brain Are Altered Following Short and Long-term Exposures to Pb+2

Catecholamine is a group of neurotransmitters that is believed to be responsible for the normal function of animal brain. Physiological and behavioral changes of human body have been reported due to the damage of the brain function following lead exposure. Due to the assumption of lead disposal in brain tissue with two year for its half-life, which results in alteration of brain function, we in...

متن کامل

Catecholamine Contents of Different Region of Adult Rat Brain Are Altered Following Short and Long-term Exposures to Pb+2

Catecholamine is a group of neurotransmitters that is believed to be responsible for the normal function of animal brain. Physiological and behavioral changes of human body have been reported due to the damage of the brain function following lead exposure. Due to the assumption of lead disposal in brain tissue with two year for its half-life, which results in alteration of brain function, we in...

متن کامل

Changes in Catecholamines and Acetylcholinesterase Levels of Crebellum, Mid-brain and Brain Cortex in Chromium Treated Rats

The short and long term effects of chromium toxicity on brain catecholamines and acetylcholinesterase levels were investigated. Rats were injected daily with varying amounts of chromium. The short term (2 h) administration of chromium (8 mmol/kg) reduced catecholamines level of cerebellum, mid-brain and brain-cortex by 22.8, 19.4 and 21.2% respectively. Acetylcholinesterase activity was also re...

متن کامل

Changes in Catecholamines and Acetylcholinesterase Levels of Crebellum, Mid-brain and Brain Cortex in Chromium Treated Rats

The short and long term effects of chromium toxicity on brain catecholamines and acetylcholinesterase levels were investigated. Rats were injected daily with varying amounts of chromium. The short term (2 h) administration of chromium (8 mmol/kg) reduced catecholamines level of cerebellum, mid-brain and brain-cortex by 22.8, 19.4 and 21.2% respectively. Acetylcholinesterase activity was also re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012